Dietary Reference Intakes Reference Values for Vitamins

		Vitamin A ^{1, 2}						Vitamin D **						Vitamin E ⁵			Vitamin K	
Unit	μ	μg/day (RAE)			IU/day (RAE)			µg/day ⁴			IU/day ⁴			mg/day			µg/day	
	EAR	RDA/AI	ÚL 3	EAR	RDA/AI	ÚL 3	EAR	RDA/AI	UL	EAR	RDA/AI	UL	EAR	RDA/AI	UL 6	AI	UL 7	
Infants																		
0-6 mo	ND	400*	600	ND	1333*	2000	ND	10*	25	ND	400*	1000	ND	4*	ND	2.0*	ND	
7-12 mo	ND	500*	600	ND	1667*	2000	ND	10*	38	ND	400*	1500	ND	5*	ND	2.5*	ND	
Children																		
1-3 y	210	300	600	700	1000	2000	10	15	63	400	600	2500	5	6	200	30*	ND	
4-8 y	275	400	900	917	1333	3000	10	15	75	400	600	3000	6	7	300	55*	ND	
Males																		
9-13 y	445	600	1700	1483	2000	5667	10	15	100	400	600	4000	9	11	600	60*	ND	
14-18 y	630	900	2800	2100	3000	9333	10	15	100	400	600	4000	12	15	800	75*	ND	
19-30 y	625	900	3000	2083	3000	10000	10	15	100	400	600	4000	12	15	1000	120*	ND	
31-50 y	625	900	3000	2083	3000	10000	10	15	100	400	600	4000	12	15	1000	120*	ND	
51-70 y	625	900	3000	2083	3000	10000	10	15	100	400	600	4000	12	15	1000	120*	ND	
>70 y	625	900	3000	2083	3000	10000	10	20	100	400	800	4000	12	15	1000	120*	ND	
Females																		
9-13 y	420	600	1700	1400	2000	5667	10	15	100	400	600	4000	9	11	600	60*	ND	
14-18 y	485	700	2800	1617	2333	9333	10	15	100	400	600	4000	12	15	800	75*	ND	
19-30 y	500	700	3000	1667	2333	10000	10	15	100	400	600	4000	12	15	1000	90*	ND	
31-50 y	500	700	3000	1667	2333	10000	10	15	100	400	600	4000	12	15	1000	90*	ND	
51-70 y	500	700	3000	1667	2333	10000	10	15	100	400	600	4000	12	15	1000	90*	ND	
>70 y	500	700	3000	1667	2333	10000	10	20	100	400	800	4000	12	15	1000	90*	ND	
Pregnancy																		
<u>< 18 y</u>	530	750	2800	1767	2500	9333	10	15	100	400	600	4000	12	15	800	75*	ND	
19-30 y	550	770	3000	1833	2567	10000	10	15	100	400	600	4000	12	15	1000	90*	ND	
31-50 y	550	770	3000	1833	2567	10000	10	15	100	400	600	4000	12	15	1000	90*	ND	
Lactation																		
<u><</u> 18 y	885	1200	2800	2950	4000	9333	10	15	100	400	600	4000	16	19	800	75*	ND	
1 <u>9-</u> 30 y	900	1300	3000	3000	4333	10000	10	15	100	400	600	4000	16	19	1000	90*	ND	
31-50 y	900	1300	3000	3000	4333	10000	10	15	100	400	600	4000	16	19	1000	90*	ND	

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (Als) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

** New 2010 values have replaced previous 1997 values.

¹As Retinol Activity Equivalents (RAE). See conversion factors for more details. ²No DRIs are established for beta-carotene or other carotenoids. However, existing recommendations for consumption of carotenoid-rich fruits and vegetables are supported.

³ UL as preformed vitamin A only. Beta-carotene supplements are advised only to serve as a provitamin A source for individuals at risk of vitamin A deficiency.

⁴ These reference values assume minimal sun exposure.

⁵ EAR and RDA/AI as alpha-tocopherol (2*R*-stereoisomeric forms) only. See conversion factors for more details.

⁶ The UL for vitamin E applies only to synthetic vitamin E (all isomeric forms) obtained from supplements, fortified foods, or a combination of the two.

⁷ Due to lack of suitable data, a UL could not be established for vitamin K. This does not mean that there is no potential for adverse effects resulting from high intakes.

NOTE: These are reference values for normal, apparently healthy individuals eating a typical mixed North American diet. An individual may have physiological, health, or lifestyle characteristics that may require tailoring of specific nutrient values.

Table from: Dietary Reference Intakes for US and Canada:

https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/hpfb-dgpsa/pdf/nutrition/dri_tables-eng.pdf

Dietary Reference Intakes Reference Values for Vitamins

	١	/itamin C	8	Thiamin			Riboflavin			Niacin ¹⁰			Vitamin B6		
Unit		mg/day			mg/day		mg/day			mg/day (NE)			mg/day		
	EAR	RDA/AI	UL	EAR	RDA/AI	٥ UU	EAR	RDA/AI	۹ UL	EAR	RDA/AI	UL 11	EAR	RDA/AI	UL
Infants															
0-6 mo	ND	40*	ND	ND	0.2*	ND	ND	0.3*	ND	ND	2* a	ND	ND	0.1*	ND
7-12 mo	ND	50*	ND	ND	0.3*	ND	ND	0.4*	ND	ND	4*	ND	ND	0.3*	ND
Children															
1-3 y	13	15	400	0.4	0.5	ND	0.4	0.5	ND	5	6	10	0.4	0.5	30
4-8 y	22	25	650	0.5	0.6	ND	0.5	0.6	ND	6	8	15	0.5	0.6	40
Males															
9-13 y	39	45	1200	0.7	0.9	ND	0.8	0.9	ND	9	12	20	0.8	1.0	60
14-18 y	63	75	1800	1.0	1.2	ND	1.1	1.3	ND	12	16	30	1.1	1.3	80
19-30 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.1	1.3	100
31-50 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.1	1.3	100
51-70 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.4	1.7	100
>70 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.4	1.7	100
Females															
9-13 y	39	45	1200	0.7	0.9	ND	0.8	0.9	ND	9	12	20	0.8	1.0	60
14-18 y	56	65	1800	0.9	1.0	ND	0.9	1.0	ND	11	14	30	1.0	1.2	80
19-30 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	11	14	35	1.1	1.3	100
31-50 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	11	14	35	1.1	1.3	100
51-70 y	60 60	75 75	2000	0.9 0.9	1.1	ND ND	0.9	1.1 1.1	ND ND	11 11	14	35 35	1.3 1.3	1.5 1.5	100
>70 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	- 11	14	30	1.3	1.5	100
Pregnancy	66	80	1800	1.2	1.4	ND	1.2	1.4	ND	14	18	30	1.6	1.9	80
<u><</u> 18 y 19-30 y	66 70	85	2000	1.2	1.4	ND	1.2	1.4	ND	14	18	30 35	1.0 1.6	1.9	100
31-50 y	70	85	2000	1.2	1.4	ND	1.2	1.4	ND	14	18	35	1.6	1.9	100
Lactation	10	05	2000	1.2	1.4	ND	1.2	1.4	ND	14	10	55	1.0	1.3	100
Lacialion < 18 y	96	115	1800	1.2	1.4	ND	1.3	1.6	ND	13	17	30	1.7	2.0	80
<u><</u> 10 y 19-30 y	90 100	115	2000	1.2	1.4	ND	1.3	1.6	ND	13	17	35	1.7	2.0	100
31-50 y	100	120	2000	1.2	1.4	ND	1.3	1.6	ND	13	17	35	1.7	2.0	100
01-00 y	100	120	2000	1.2	1.4	ND	1.5	1.0	ND	15	17	55	1.7	2.0	100

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (Als) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

⁸ Because smoking increases oxidative stress and metabolic turnover of vitamin C, the requirement for smokers is increased by 35 mg/day.
⁹ Due to lack of suitable data, ULs could not be established for thiamin and riboflavin. This does not mean that there is no potential for adverse effects resulting from high intakes.
¹⁰ As Niacin Equivalents (NE). See conversion factors for more details.

¹¹ The UL for niacin applies only to synthetic forms obtained from supplements, fortified foods, or a combination of the two.

^a As preformed niacin, not NE, for this age group.

NOTE: These are reference values for normal, apparently healthy individuals eating a typical mixed North American diet. An individual may have physiological, health, or lifestyle characteristics that may require tailoring of specific nutrient values.

Table from: Dietary Reference Intakes for US and Canada:

https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/hpfb-dgpsa/pdf/nutrition/dri_tables-eng.pdf

Dietary Reference Intakes Reference Values for Vitamins

		Folate ¹²	2	Vitamin B12			Panto Ac	thenic cid	Bio	otin	Choline ¹⁵	
Unit	μg/day (DFE)			μg/day			mg/	day	μg/	day	mg/day	
	EAR	RDA/AI	UL ¹³	EAR	RDA/AI	UL ¹⁴	Al	UL 14	AI	UL 14	Al	UL
Infants												
0-6 mo	ND	65*	ND	ND	0.4*	ND	1.7*	ND	5*	ND	125*	ND
7-12 mo	ND	80*	ND	ND	0.5*	ND	1.8*	ND	6*	ND	150*	ND
Children												
1-3 y	120	150	300	0.7	0.9	ND	2*	ND	8*	ND	200*	1000
4-8 y	160	200	400	1.0	1.2	ND	3*	ND	12*	ND	250*	1000
Males												
9-13 y	250	300	600	1.5	1.8	ND	4*	ND	20*	ND	375*	2000
14-18 y	330	400	800	2.0	2.4	ND	5*	ND	25*	ND	550*	3000
19-30 y	320	400	1000	2.0	2.4	ND	5*	ND	30*	ND	550*	3500
31-50 y	320	400	1000	2.0	2.4	ND	5*	ND	30*	ND	550*	3500
51-70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	550*	3500
>70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	550*	3500
Females												
9-13 y	250	300	600	1.5	1.8	ND	4*	ND	20*	ND	375*	2000
14-18 y	330	400 ^b	800	2.0	2.4	ND	5*	ND	25*	ND	400*	3000
19-30 y	320	400 ^b	1000	2.0	2.4	ND	5*	ND	30*	ND	425*	3500
31-50 y	320	400 ^b	1000	2.0	2.4	ND	5*	ND	30*	ND	425*	3500
51-70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	425*	3500
>70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	425*	3500
Pregnancy												
<u>< 1</u> 8 y	520	^c 000	800	2.2	2.6	ND	6*	ND	30*	ND	450*	3000
19-30 y	520	^c 000	1000	2.2	2.6	ND	6*	ND	30*	ND	450*	3500
31-50 y	520	600 ^c	1000	2.2	2.6	ND	6*	ND	30*	ND	450*	3500
Lactation												
<u>< 1</u> 8 y	450	500	800	2.4	2.8	ND	7*	ND	35*	ND	550*	3000
19-30 y	450	500	1000	2.4	2.8	ND	7*	ND	35*	ND	550*	3500
31-50 y	450	500	1000	2.4	2.8	ND	7*	ND	35*	ND	550*	3500

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

¹² As Dietary Folate Equivalents (DFE). See conversion factors for more details.
¹³ The UL for folate applies only to synthetic forms obtained from supplements, fortified foods, or a combination of the two.

¹⁴ Due to lack of suitable data, ULs could not be established for vitamin B12, pantothenic acid or biotin. This does not mean that there is no potential for adverse effects resulting from high intakes.

¹⁵ Although Als have been set for choline, there are few data to assess whether a dietary supply of choline is needed at all stages of the life cycle, and it may be that the choline requirement can be met by endogenous synthesis at some of these stages.

^b In view of evidence linking the use of supplements containing folic acid before conception and during early pregnancy with reduced risk of neural tube defects in the fetus, it is recommended that all women capable of becoming pregnant take a supplement containing 400µg of folic acid every day, in addition to the amount of folate found in a healthy diet.

^c It is assumed that women will continue consuming 400 µg folic acid from supplements until their pregnancy is confirmed and they enter prenatal care. The critical time for formation of the neural tube is shortly after conception.

^d Because 10 to 30 percent of older people may malabsorb food-bound vitamin B12, it is advisable for those older than 50 years to meet the RDA mainly by consuming foods fortified with vitamin B12 or a supplement containing vitamin B12.

Table from: Dietary Reference Intakes for US and Canada:

https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/hpfb-dgpsa/pdf/nutrition/dri_tables-eng.pdf